Reg. No.	Nog. No.
----------	----------

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2021 and later)

PROGRAMME AND BRANCH: B.Sc., CHEMISTRY

SEM	C.	CATEGORY		COMPONENT	COURSE CODE	COURSE TITLE					
VI	VI PART - II			CORE	U21CH611	ORGANIC CHEMISTRY-IV					
Date &	s Sessio	n: 14.1	1.2024 /	' FN	Time : 3 hours	Maximum: 75 Marks					
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – A (</u> 10 X 1 = 10 Marks) Answer <u>ALL</u> Questions.								
CO1	K1	1.	Select w a) Ribo	Select which of the following is the product of the chain lengthening of an aldose?a) Riboseb) Erythrosec) Xylosed) Glucose							
CO1	K2	2.	Show w a) Oxida	Show what type of reaction leads to the formation of osazone from glucose?a) Oxidationb) reductionc) condensationd) hydrolysis							
CO2	K1	3.	Choose why is phenol more acidic than alcohols? a) Due to the resonance stabilization of the phenoxide ion b) Due to the electron-donating nature of the hydroxyl group c) because phenol is more soluble in water d) Due to the presence of multiple hydroxyl groups								
CO2	K2	4.	Benzoin condensation is catalyzed by which type of catalyst?a) acidb) basec) nucleophillicd) lewis acid								
CO3	K1	5.	Name th a) Carbo	Name the intermediate which is typically formed in the pinacol rearrangement.a) Carbocationb) Radicalc) Carbaniond) Nucleophile							
CO3	K2	6.	Indicate form hy a) Aryl c) Aron	Indicate which type of compound undergoes rearrangement in the Dakin reaction to form hydroxyaryl aldehydes or ketones.a) Aryl aldehydesb) Aromatic aminesc) Aromatic estersd) Aryl ketones							
CO4	K1	7.	Terpene a) Benz c) Hydr	Terpenes are classified based on which of the following units?a) Benzene ringsb) Isoprene unitsc) Hydroxyl groupsd) Carbonyl groups							
CO4	K2	8.	Conine consist ofa) Piperidine ringb) Pyridine ringc) Indole ringd) Quinoline ring								
CO5	K1	9.	 In which of the following systemsWoodward-Fieser rules help in predicting the λmax a) Conjugated dienes and α,β-unsaturated ketones b) Aromatic compounds c) Amines d) Alcohols 								
CO5	K2	10.	O-H stretching frequency of alcohols is typically found in a) $1600-1700 \text{ cm}^{-1}$ b) $2500-3000 \text{ cm}^{-1}$ c) $3200-3600 \text{ cm}^{-1}$ d) $700-900 \text{ cm}^{-1}$								
Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – B (</u> 5 X 5 = 25 Marks) Answer <u>ALL Q</u> uestions choosing either (a) or (b)								
CO1	КЗ	11a.	Illustrat	te the formation o	of osazone from glucose an (OR)	d fructose.					
CO1	K3	11b.	Explain the mechanism of mutarotation in glucose and describe how this phenomenon confirms the cyclic structure of the sugar.								

CO2	K3	12a.	Demonstrate the mechanism of Kolbe's reaction using phenol as the starting material. What is the final product, and how is it useful in industry? (OR)
CO2	КЗ	12b.	Outline the mechanism of the Houben-Hoesch synthesis and explain its application in synthesizing aromatic ketones.
CO3	K4	13a.	Analyze the mechanism of the Wagner-Meerwein rearrangement and discuss how the carbocation stability impacts the product formation. (OR)
CO3	K4	13b.	Examine the mechanistic pathway of the Fries rearrangement.
CO4	K4	14a.	Evaluate the classification of alkaloids. How does the structural diversity among alkaloids correlate with their pharmacological activities? (OR)
CO4	K4	14b.	Contrast the structural features of piperine. How do these features influence their biological effects and uses in traditional medicine?
CO5	K5	15a.	Critically analyze the Woodward-Fischer rules in the context of UV spectroscopy. (OR)
CO5	K5	15b.	Evaluate the role of NMR spectroscopy in elucidating the structure of complex organic molecules.

Course Outcome	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - C}{\text{Answer}} (5 \text{ X 8} = 40 \text{ Marks})$ Answer <u>ALL</u> Questions choosing either (a) or (b)
CO1	КЗ	16a.	Demonstrate the epimerization of glucose and explain how glucose can be converted to mannose. ii) Using the Kiliani-Fischer synthesis, describe how you can increase the chain length of aldoses. (OR)
CO1	K3	16b.	Compare the structural features and functions of starch and cellulose as polysaccharides ii) Describe the process of hydrolysis of sucrose.
CO2	K4	17a.	Analyze the mechanisms of the Cannizzaro reaction and benzoin condensation. What are the key steps in each mechanism? (OR)
CO2	K4	17b.	Explain the mechanisms of the benzoin condensation and Perkin reaction.
CO3	K4	18a.	Analyze the mechanisms of the Hofmann rearrangement. (OR)
CO3	K4	18b.	Discuss the mechanistic differences between the Curtius rearrangements. What role does the formation of an isocyanate intermediate play in this reactions?
CO4	K5	19a.	Assess the synthetic pathways for citral. How do the mechanisms of these synthetic routes compare, and what implications do they have for industrial production? (OR)
CO4	K5	19b.	Evaluate themethod used for the structural elucidation and synthesis of piperine in the context of natural product chemistry. How do their structures inform their biological activities and potential applications in medicine?
CO5	K5	20a.	Critically analyze the applications of UV spectroscopy in studying functional groups and cis-trans isomerism. How do the Woodward-Fischer rules aid in predicting the absorption characteristics of conjugated systems and alpha and beta unsaturated ketones?
CO5	К5	20b.	Evaluate the significance of IR absorption frequencies in identifying functional groups. How do variations in these frequencies correlate with molecular structure, including factors such as hydrogen bonding?